您现在的位置: 天下网吧 >> 网吧天下 >> 网吧行业 >> 网络追踪 >> 正文

2014年改变世界的10大革命性技术

[作者:佚名 来源:不详 时间:2014-12-18我来说两句
体液为电池充电。他说这只是他宏伟目标的第一步,今后,他打算帮助贫困国家,利用工业废弃物中的有机物来发电,并将电力用于海水淡化。

“原子积木”搭建新奇材料

新材料的发现总是会促进人类文明的进步。这是推动人类社会从石器时代到青铜时代,再到铁器时代,最后来到硅时代的动力。

乐高积木是一种很有魔力的塑料玩具,它不断地激发出一个又一个新创意。乐高积木的塑料组件体积很小,能按照不同方式组合到一起,从而变成神奇的汽车、设计巧妙的城堡和许多其他结构。而今天,新一代材料科学家正受乐高积木的启发,将这种组合方式应用到纳米世界。

这里的积木组件是一些层状材料。这些材料最薄可以达到仅有一层原子,可以按照设计好的结构,以精确的顺序一层一层地叠加到一起。这种前所未有的精密组合方式,能够制造出全新的物质,这些物质具备前所未有的电学和光学性能。科学家们进一步设想,可以利用这些物质,制造出几乎没有电阻的导电材料,运算能力更强大、运行更快的计算机,以及可弯曲、可折叠而且非常轻的可穿戴电子器件。

这些突破性的研究,是因石墨烯(graphene)的出现才产生的。石墨烯是一种片状结构的石墨新材料,厚度只有一个原子,其原子结构是一个个重复的六边形,看起来就像铁丝网围栏一样。2004年,我和英国曼彻斯特大学的同事从块状石墨上分离出了单层石墨片——石墨烯,使用的方法是利用胶带从块状石墨顶层剥离出一片片1个原子厚的晶体。过去10年间,研究人员发现了几十种可以用这个方法剥离的块状晶体,而且这样的晶体越来越多。云母(Mica)就是其中的一种晶体,还有一些具有独特名字的材料,如六方氮化硼(hexagonal boron nitride)和二硫化钼(molybdenumdisulfide)。

这些晶体层被认为是二维材料,因为对任何材料来说,其最小厚度就是单个原子厚度(稍厚点的晶体,如3个左右的原子厚度,也可以看做是二维的)。而根据制造者的需求,晶体层的其他尺寸——宽度和长度,可以非常大。由于二维晶体具有许多非常独特的性能,在过去几年里,它们已经成为材料科学和固体物理领域非常热门的话题。

我们可以将这些晶体层非常稳定地叠放在一起。它们并不是按常规方式通过化学键相连的,比如共享电子的共价键。当它们相互靠得非常近时,原子间会通过大家熟知的微弱的范德华力相互吸引。这个力通常不够大,无法将多个原子或分子聚合在一起,但因为这些二维晶体层的原子非常密集,彼此之间的距离也非常近,因此这些力累加到一起,会变得很强大。

为了理解这种材料究竟会带来什么诱人的可能性,我们可以想一下室温超导。要实现无能量损失的电流传输,而且又不需要将设备置于超低温环境中,这一直是几代科学家的梦想。如果发现了可以实现这个目标的材料,对人类文明一定会产生非常深远的影响。研究人员的共识是,原则上这个目标是可以实现的,但没有人知道如何实现。到今天,超导材料的最高临界温度(超导材料从正常态转变为超导态时的温度)也要在-100℃以下。过去20年来,这方面的进展非常有限。

我们最近发现,用我前面描述的方法,可以将许多氧化物(由至少一个氧原子和许多其他元素组成的化合物)超导体分解成厚度为1个原子的片层结构。如果我们换一种顺序,将各层重新组合,并且在中间添加一层其他晶体层,会发生什么呢?我们已经知道,氧化物的超导性依赖于层间距离;我们还知道在晶面之间增加一层额外的晶体层,可以将弱导电甚至绝缘材料变为超导体。测试这一想法的真实实验还没有完成,主要是因为,制备原子尺度的“乐高材料”的相关技术仍然处于初期阶段,而且将复杂的多层结构组合到一起也很困难。

目前,这些结构所含的不同晶体层很少能多于5种,一般只含两种或3种不同的晶体层,一般是由石墨烯片与二维材料(绝缘体氮化硼、半导体二硫化钼、二硒化钨等)组成。因为这种堆叠结构含有多种材料,经常被看作异质结构。它们现在的尺寸都非常小,通常长宽都只有10微米,比头发的横截面还小。利用这些堆叠结构,我们可以通过实验来探索其新奇的电学和光学性能以及新用途。这些结构还有一个有趣的特性:它们不仅非常薄,还非常柔软,而且透明。这就为制备多种形状的发光设备提供了可能:研究人员有机会制备出可折叠的显示屏,当使用者需要大一点的显示屏时,就可以将显示屏展开;也可能制备出新的计算机芯片,耗能要比现在的芯片低很多。

研究人员在研究这类新材料时,如果能有一些重大突破,我们相信,一定会发展出相应的大规模制备技术,以实现其工业应用。就像石墨烯和其他一些二维晶体材料那样。最初制备那些材料时,仅能得到几微米大的微晶,现在我们已经可以得到几百平方米大的片状材料。

目前,还没有人发现这类新材料有什么改变世界的“杀手级应用”,然而,这一领域取得的进步,已经让很多科学家感到兴奋。新材料的发现总是会促进人类文明的进步。这是推动人类社会从石器时代到青铜时代,再到铁器时代,最后来到硅时代的背后力量。纳米尺度的“乐高积木”代表了人类从未制造过的新材料。现在,我们只能猜想未来的一切,但我们相信,这种新材料带来的可能性将是无限的。

声波充电

2011年,美国宾夕法尼亚大学,当时还是古生物学专业高年级学生的梅瑞狄斯•佩里(Meredith Perry)伸手去拿她的笔记本电脑充电器。

突然间,一个想法跃入了她的脑海:是否有一天能抛开这些麻烦的充电线呢?她随即开始寻找将这个想法变为现实的途径。

佩里了解到,已经有基于磁共振和电磁感应的无线电力传输技术了,但它们的传输距离有限。限制它们的是平方反比定律(inverse square law),即电磁辐射的强度与辐射源的距离的平方成反比。

然而,机械振动却不存在这个问题。使用压电转换器从空气中获取振动能量,就可以将机械能转化为电能,这看起来是一个更好的主意。因为声音其实就是振动的空气粒子,所以从理论上来说,它应该能够传输能量。而安全、安静且高能的超声波是个完美的选择。

当佩里同本校教授以及其他专家讨论时,很多人都认为这个想法不可行,因为无法利用超声波提取出足够的能量来为电子设备充电;而且,如果她真要尝试的话,还会遇到大量的电子工程和声学方面的问题。“但是,我知道这在理论上是可行的,”佩里说,“而且没有人能提出足够的证据,证明这绝对无法实现。”所以,她找到了uBeam公司,来研发这项技术。

目前,他们已经开发出了uBeam发射机的原型样机。它相当于一台定向扬声器,可以将超声波聚焦,产生一个能量“焦点”;与电子设备相连的接收器负责接收这股能量,并将其转化为电能。她计划在两年内推出第一批产品。

佩里说,通用无线充电系统不仅能让我们不用再携带目前各式各样且互不兼容的电线和充电器,还可以保证移动设备在进行高耗电操作时不会用尽电量。摆脱电线的束缚,还能带来崭新的室内装修设计思路。此外,目前载有沉重输电线缆的飞机、汽车、太空船等运载工具,重量也可以大幅降低。

“总的来说,无线充电技术将彻底改变我们与物质世界的作用方式,”佩里说,“我们将

关注天下网吧微信,了解网吧网咖经营管理,安装维护:


本文来源:不详 作者:佚名

声明
本文来源地址:http://www.ithome.com/
声明:本站所发表的文章、评论及图片仅代表作者本人观点,与本站立场无关。若文章侵犯了您的相关权益,请及时与我们联系,我们会及时处理,感谢您对本站的支持!联系邮箱:support@txwb.com.,本站所有有注明来源为天下网吧或天下网吧论坛的原创作品,各位转载时请注明来源链接!
天下网吧 网吧天下